FORMULAE AND TABLES PROVIDED IN THE EXAMINATION

Volume of prism V = Ah where A is the area of the cross-section and h is the height or length of the prism (Volume of a cylinder = $\pi r^2 h$) Volume of pyramid $\frac{1}{2}Ah$ where A is the area of the base and h is the height of the pyramid. (Volume of cone = $\frac{1}{3} \times \pi r^2 h$) **Circumference of a circle** $C = \pi d$ or $2\pi r$ where r is the radius (d is the diameter) $A = \pi r^2$ Area of a circle Area of a trapezium $A = \frac{1}{2}(a+b) \times h$ where a and b are the parallel side and h is the perpendicular distance between the parallel sides. **Root of a quadratic** If $ax^2 + bx + c = 0$, then equation $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ $\sin\theta = \frac{opposite}{hypotenuse}$ **Trigonometric ratios** Hypotenuse $\cos\theta = \frac{adjacent}{hypotenuse}$ Opposite θ $\tan \theta = \frac{opposite}{adjacent}$ Adjacent Area of triangle 1. $A = \frac{1}{2}bh$, where b is the base length and h is the perpendicular height. 2. $A = \frac{1}{2}ab\sin C$ 3. $A = \sqrt{s(s-a)(s-b)(s-c)}$ where $s = \frac{a+b+c}{2}$ В

Cosine Rule

Sine Rule

 $a^2 = b^2 + c^2 - 2bcCosA$

.

 $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$